The Road to Autonomous Driving:
Transforming Automotive Engineering in a Connected World...

Gary O’Brien, Ph.D.
Global Director of Advanced Engineering
Delphi Electronics & Safety (E&S)
On the road to automated vehicles...

Sensors pave the way!
IoT: Reality or Hype?
26B connected devices
250M connected vehicles
by 2020...

Source: Gartner
The Connected Car Evolves...

The embedded era
1995–2002
Examples: GM Onstar

The infotainment era
2007–2012
Examples: Ford SYNC, Kia UVO, GM MyLink

The R&D era
1966–1995
Examples: GM’s DAIR system

The V2X era
2012–ongoing
Examples: Tesla app, Nissan Nismo, Progressive Snapshot

The new mobility era
2020–ongoing
Examples: Tesla Autopilot, self-driving initiatives by Google, Audi, Daimler

Source: Deloitte University Press
Cars talking with surrounding infrastructure...

Vehicle-to-Everything (V2E)

I'm stalled and can't move.

My left light turns green in 30 seconds.

Thanks! I'll change my route and turn at this light coming up.
Vehicle-to-Everything (V2E)

- Delphi MY17 V2V production system (in NA)
 - Stationary/ Slow Vehicle Ahead (SVA)
 - Emergency electronic Braking Lights (EEBL)
 - Road Condition Hazard Ahead (RCHA)
 - Cross Traffic Assistant (CTA) – Enabled in MY18

- Delphi MY18 V2X production system (in EU+NA)
 - Stationary/ Slow Vehicle Ahead (SVA)
 - Emergency Electronic Braking Lights (EEBL)
 - Hazard Location Warning (HLW)
 - Intersection Collision Warning (ICW)
 - Signal Violating Warning (SVW)
 - Emergency Vehicle Warning (EVW)
 - Traffic Jam Assist (TJA)
 - Road Work Warning (RWW)
 - Green Light Optimization Speed Advisory (GLOSA)
Advanced Driver Assistance Systems (ADAS) & Automated Driving
1st Coast-to-Coast Automated Drive

Automated Drive Highlights:
>3,400 miles traveled
>99% of drive fully Automated
Duration: 9 days across 15 states

~20 Sensors:
- RADAR
- Vision
- LIDAR

Automated Software Source: Ottomatika
1st Coast-to-Coast Automated Drive: Challenges

- Construction
- Traffic circles
- Bridges
- Tunnels
- Lane hogs
CES (Las Vegas) 2016: Automated Car Demo

Delphi’s New Self-Driving Car Teaches Give Up the Wheel

Wired Magazine Article from Jan 4, 2016

CES (Las Vegas) 2016: Automated Car Demo

First on CNBC: Cars talking to each other
Monday, 4 Jan 2016 | 7:00 PM ET
CNBC's Phil LeBeau goes behind the wheel of several autonomous vehicles at the Consumer Electronics Show in Las Vegas.

CNBC Video Article from Jan 4, 2016
http://video.cnbc.com/gallery/?video=3000473657

Automated Driving Route, CES Jan 4-9, 2016
NHTSA Automated Driving Levels (0-4)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Level 0</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver only</td>
<td>Driver only</td>
<td>Assisted</td>
<td>Partial</td>
<td>Conditional</td>
<td>Full</td>
</tr>
<tr>
<td>Active high beam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collision imminent braking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cruise control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic jam assist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptive cruise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>& lane keeping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-parking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(with driver)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collision avoidance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automated highway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automated urban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valet self-parking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highway point-to-point</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban point-to-point</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology</th>
<th>Today</th>
<th>2020</th>
<th>2025+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Radar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Vision</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-domain controller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lidar & 360° Radar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High accuracy GPS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver State Sensor (DSS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMU</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Driver only refers to the level where the driver does all driving tasks, while *Assisted* refers to levels where the driver needs to monitor the system for接管 driving tasks. *Partial* indicates the system can take over for a short period if the driver is not watching. *Conditional* means the system can take over if a pre-defined condition is met. *Full* implies the system can take over in all conditions.

Feature includes elements like active high beam, traffic jam assist, and collision avoidance.

Technology includes components like forward radar, forward vision, lidar and 360° radar, driver state sensor (DSS), V2X, and IMU.
Vision/Radar/Lidar Operation and Fusion

Camera
- **How it works:** A camera takes images of the road that are interpreted by a computer.
- **Strengths:** Distinguish and classifies objects, such as traffic lights, tail lights, road lines and signs. It can also classify some objects, such as the deer being a large animal.
- **Weakness:** Like us, what it can’t see, it can’t see — in the dark, into direct sunlight and when objects are hidden.

LiDAR
- **How it works:** Light pulses are sent out, reflected off objects and received for interpretation.
- **Strengths:** Can define specific objects, such as a deer and its distance. Can tell where lines are on the road. Works in the dark.
- **Weakness:** In bad weather, the light reflects off fog, rain or snow, making objects hard to define.

Radar
- **How it works:** Radio waves are sent out, bounced off objects and received for interpretation.
- **Strengths:** Knows there are large objects that could be a deer. Does a good job calculating the deer’s speed and its distance. Can work in all weather, day or night. Can even fill in some hidden objects.
- **Weakness:** Can’t see color or differentiate objects, such as a deer from a big rock.

Multi-domain controller
- **With cameras, Radar and LiDAR, you’re getting three forms of input. Putting them all together is the multi-domain controller’s job. It takes the best of all three. Add mapping and navigation information and you can confirm decisions in multiple ways.**
Multi-domain Controller

- Scalable software platform
- Reduced architecture complexity
- Faster communication/interconnection
- Multi-processor configuration

Production launch in 2017

Enables future system optimization/upgradability
Typical Software Applications: Lines of Code

12 million lines of code
Android Operating System

24 million lines of code
F-35 fighter jet

44 million lines of code
Microsoft Office 2013

61 million lines of code
Facebook

Premium vehicle

50+ computers
To deliver a world-class user experience, active safety and high performance drivability

Premium vehicles today operate with over 100 million+ lines of code

Software lines of code information courtesy of informationisbeautiful.net
The future for Automated Driving is...

Safe Green Connected
Active Safety is the Foundation for Automated Driving

Winning through innovation
The Past & Present: Automotive Safety...

Automotive fatalities: USA

- Seat Belt Mandates
- Air Bag Sensors/Mandates
- ESC and Roll Over Sensors
- Distracted Driving

Drivers in their 20s make up 27 percent of the distracted drivers in fatal crashes. (NHTSA)

Source: http://www.iihs.org/iihs/topics/t/general-statistics/fatalityfacts/overview-of-fatality-facts

National Highway Traffic Safety Administration (NHTSA)
U.S. DOT and IIHS announce historic commitment of 20 automakers to make automatic emergency braking standard on new vehicles

McLEAN, Va. — The U.S. Department of Transportation's National Highway Traffic Safety Administration and the Insurance Institute for Highway Safety announced today a historic commitment by 20 automakers representing more than 99 percent of the U.S. auto market to make automatic emergency braking a standard feature on virtually all new cars no later than NHTSA's 2022 reporting year, which begins Sept. 1, 2022.
ADAS Radar and Vision Sensors

ESR 2.5
- Long Range RADAR (LRR)
- Med Range RADAR (MRR)
- 200 m
- 80 MHz BW
- 90°

RACam 1.0
- Euro NCAP 5-Star Safety Rating
- (ESR 2.5 + Camera)

360° Sensing System
- Front/Rear/Side Detection System

Feature | RACam 1.0
| High Beam Control (AHBC & GFHB) | ✓
| Lane Departure Warning (LDW) | ✓
| Lane Keeping Assist (LKA) | ✓
| Traffic Sign Recognition (TSR) | ✓
| Distance Warning (DW) | ✓
| Forward Collision Warning (FCW) | ✓
| AEB City | ✓
| AEB Urban | ✓
| AEB Pedestrian | ✓
| AEB for Animals | ✓
| AEB for General Objects | ✓
| AEB for Crossing Vehicles | Optional
| AEB for Left Turns Across Path | ✓
| Night Vision (NV) | Optional
| Adaptive Cruise Control (ACC) | ✓
| Traffic Jam Assist | ✓
| Active Body Control | ✓
| Passive Safety | ✓
RACam (Radar/Camera) Sensor Fusion

Key product features
- Adaptive cruise control, lane departure warning / lane keep assist, forward collision warning, low speed collision mitigation
- Autonomous Emergency Braking (AEB) for vehicles, pedestrians, animals, general objects

Benefits
- Most cost effective and robust auto-braking system
- Vehicle benefits: integration savings, weight savings, front styling, performance, reduced service costs, streamlined factory alignment process

Delphi advantages
- Only supplier with single integrated sensor module that combines radar sensing, vision sensing, and sensor fusion
- Leverages Delphi’s first to market and industry leading Radar / vision fusion experience
- Uses data fusion algorithms to combine inputs from the radar and camera to reduce the potential for accidents, injury and costly property damage
Delphi RACam Sensor Fusion

• Integrated radar and camera
• Major building block to automated driving
Automated Driving Mobility-On-Demand

Delphi Mobility Cloud

Automated Driving Sensor Suite

Multi-domain Controller

Automated Driving Software Algorithms